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Abstract  

We describe herein a Web based pattern mining and matching approach to question answering. For each 
type of questions, a lot of textual patterns can be learned from the Web automatically, using the TREC 
QA track data as training examples. These textual patterns are assessed by the concepts of support and 
confidence, which are borrowed from the data mining community. Given a new unseen question, these 
textual patterns can be utilized to extract and rank the plausible answers on the Web. The performance 
of this approach has been evaluated also by the TREC QA track data.  

1 Introduction 
What a current information retrieval system or search engine can do is just “document retrieval”, i.e., 
given some keywords it only returns the relevant documents that contain the keywords. However, what a 
user really wants is often a precise answer to a question. TREC has launched a QA track to support the 
competitive research on question answering, from 1999 (TREC8). The focus of TREC QA track is to 
build a fully automatic open-domain question answering system, which can answer factual questions 
based on very large document. Today, the TREC QA track [V0099][Voo00][Voo01] is the major large-
scale evaluation environment for open-domain question answering systems. 

Most of the recent question answering systems [V0099][Voo00][Voo01] require sophisticated linguistic 
knowledge or tools, such as parser, named-entity recognizer, ontology, WordNet, etc. However, at the 
TREC10 QA track [Voo01], the best performing system just used many textual patterns [SS01]. The 
power of textual patterns for question answering looks quite amazing and stimulating to us.  

We describe herein a Web based pattern mining and matching approach to question answering. For each 
type of questions, a lot of textual patterns can be learned from the Web automatically, using the TREC 
QA track data as training examples. These textual patterns are assessed by the concepts of support and 
confidence, which are borrowed from the data mining community. Given a new unseen question, these 
textual patterns can be utilized to extract and rank the plausible answers on the Web. The performance 
of this approach has been evaluated also by the TREC QA track data. 

To illustrate our approach, we would like to use the question “Who was the first American in space?” as 
a running sample in the following sections. This question was the No.21 test question in the TREC8 QA 
track. 



 

2 System Overview 

 
Figure 1, system architecture. 

As shown in Figure 1, the system entails two main functions, one is learning and the other is answering. 
For both functions, the question has to be pre-processed by the transforming and recognizing module. 

The answering part of the system relies on the textual patterns. A textual pattern can be in either of the 
following two forms. 

  _Q_ <intermediate string> _A_ <boundary string> 
  <boundary string> _A_ <intermediate string> _Q_ 

Here, _Q_ stands for the question key phrase and _A_ stands for the potential answer. The key phrase of 
a question is a continuous sequence of words in that question, which represents the primary object or 
event the question asking about. For instance, the key phrase of the sample question would be “the first 
American in space”. A textual pattern actually describes the context of some potential answers to a 
specific class of questions.  

Such textual patterns can be learned using some question-answer pairs as training examples. For 
instance, the correct answer to the sample question can be found in the string “In 1961, Alan Shepard 
became the first American in space ……”, this observation suggests that the textual pattern “, _A_ 
became _Q_” can be used to answer similar questions like “Who was the first U.S. president?”, “Who 
was the second man to walk on the moon?”, and so on.   

The learning part of the system will take advantage of the TREC QA track data as training examples. In 
each year’s competition, TREC organizers issue several hundred questions to test the participant systems, 
and later release the regular expressions indicating the correct answers to each test question. Such TREC 
questions along with their answer regular expressions are our training examples. 

3 Algorithms 
3.1 Transforming 



 

The transforming algorithm attempts to guess how the answer to the question may appear in a target 
sentence, i.e. a sentence that contains the answer, and then transforms the question to that format. We 
hope there will be more chances to find the answer after transforming the question. Currently two 
transforming methods are used. 

For questions with an auxiliary do-verb and a main verb, the target sentence is likely to contain the verb 
in the conjugated form rather than separate verbs. For instance, the answer to the question “When did 
Nixon visit China?” would more likely to occur in the target sentence as “…… Nixon visited 
China ……” rather than “…… did Nixon visit China ……”. So we transform the question by 
conjugating the auxiliary do-verb and the main verb. To locate the main verb like “visit” in the question, 
we have to parse the question using the MEI parser [Cha99]. To find the converted verb like “visited”, 
we utilize PC-KIMMO [Ant90].  

For questions with an auxiliary be-verb and a main verb (past particular), the target sentence is likely to 
contain these two verbs continuously together. For instance, the answer to the question “When was the 
telephone invented?” would more likely to occur in the target sentence as “……the telephone was 
invented ……” rather than “……was the telephone invented ……”. So we transform the question by 
moving the auxiliary be-verb to the place just before the main verb. Again the MEI-parser is used to 
locate the main verb. 

3.2 Recognizing 
The recognizing algorithm determines the class of the question and the key phrase of the question. This 
was done by finding the appropriate template of the question. 

Currently, we have defined 22 question classes, and each class has several templates formulated as 
regular expressions which indicate the possible appearance of this type questions. For instance, some of 
the templates in the ACRONYM class are as the following. 

What is _Q_ 
What is the meaning of _Q_ 
What the (?:acronym|abbreviation) _Q_ (?:stands for|means) 
What _Q_ (?:stands for|means) 
What the initials _Q_ (?:stand for|mean) 
_Q_ is (?:an|the) (?:acronym|abbreviation) for what 
_Q_ stands for what 

3.3 Learning 

Assume the set of QA examples is E . Each QA example ( , )i i ie q rea=  consists of two parts, the 

question iq and the regular expression of its correct answer irea .  The following algorithms can learn the 

textual patterns of a specific question class c  from the Web. 

3.3.1 Construct Snippet Database 

Given the QA examples of class c , { }( ) ( , ) | ( , ) ^ ( )c
i i i i iE q rea q rea E class q c= ∈ = , the following 

algorithm can automatically construct the snippet database of class c , ( )cS . 

For each ( ) ( ), c
i iq rea E∈ , do { 

Submit ( )ikp q  as a phrase along with the words in iq  to a Web search engine, such as Google 

(http://www.google.com/).  
Grab the search result returned by the search engine. 



 

Extract the text snippets from the search result. 
For each snippet ijs , do { 

Insert a special symbol “_<_” at the head of ijs . 

Append a special symbol “_>_” at the tail of ijs . 

Replace every ( )ikp q  with a special symbol “_Q_”.   

Find the answer ia  using the answer regular expression irea .  

Replace every ia  with a special symbol “_A_”.  

Add ijs  to ( )cS . 

} 
} 

For instance, the sample question “Who was the first American in space?” and its answer regular 
expression “((Alan (B\. )?)?Shephard)” can be taken as a QA example of the WHO-IS class. The following 
query will be submitted to Google, and then get the search result. 

   “the first American in space” Who was the first American in space? 

A small portation of the snippet database of the WHO-IS class is shown in Figure 2. 

 
Figure 2, sample snippet database 

Two special symbols “_<_” and “_>_” are used to simplify the algorithm, where “_<_” stands for the 
head of the snippet and “_>_” stands for the tail of the snippet. 

3.3.2 Discover Textual Patterns 

Given the snippet database of class c , ( )cS , the following algorithm can automatically discover the 
textual patterns of class c , ( )cP . 

For each ( )c
ijs S∈ , do { 

If ( ijs  contains both “_Q_” and “_A_”) then { 

Extract the textual pattern kp  from the snippet using the following two regular 

expressions: 
(\b_Q_\b(.*?)\b_A_\b\s*(_>_|\W|(\w+))) 
((_<_|\W|(\w+))\s*\b_A_\b(.*?)\b_Q_\b) 

If ( kp  is not in ( )cP  yet) then Add kp  to ( )cP . 

} 
} 

Some of the discovered textual patterns of the WHO-IS class is shown in Figure 3.  

…… 
_<_ in mind that Alan Shepard was _Q_, not the first man. _>_ 
_<_ John Glenn is not picked to be _Q_. _>_ 
_<_ Alan Shepard becomes _Q_. _>_ 
_<_ Then on 5 May 1961, less than a month after the Gagarin mission, Alan Shepard became _Q_. 
_>_ 
_<_ with general relativity theory to follow, in 1905 60 Yuri Gagarin became the first man in space 
in 1961 66 Alan Shepard became _Q_ in Yahoo! _>_ 
_<_ _Q_ was Alan Shepard, launched on May 5th Sea and Sky: Space Exploration 1961 - 1970. _>_ 
…… 



 

 
Figure 3, sample discovered textual patterns 

3.3.3 Assess Textual Patterns 

Given the textual patterns of class c , ( )cP , and the snippet database of class c , ( )cS , the following 
algorithm can automatically assess the textual patterns in ( )cP .  

For each textual pattern ( )c
kp P∈ , do { 

Translate the textual pattern kp  into a regular expression ( )kre p , the special symbol “_A_” are 

replaced by “(.*?)”, means this part can be matched by any string. 

Search ( )kre p  in ( )cS . 

Let X  denote the set of snippets which can match ( )kre p . 

Let Y  denote the set of snippets which can not only match ( )kre p , but also the string 

corresponding to the “(.*?)” part is just “_A_ “. 

( )
support( )k c

Y
p

S
= , confidence( )k

Y
p

X
=  

If support( )kp  is less than the threshold supportt , then remove kp  from ( )cP . 

If confidence( )kp  is less than the threshold confidencet , then remove kp  from ( )cP . 

} 

In fact, a textual pattern can be considered as an association rule “context => answer”. The concepts 
support and confidence are borrowed from the data mining community. 

Some of the assessed textual patterns of the WHO-IS class is shown in Figure 4.  

 
Figure 4, sample assessed textual patterns 

3.4 Answering 
Having the assessed textual patterns of each question, the following algorithm can be employed to 
answer a new unseen question. 

For a new question newq , determine its class c  and its key phrase ( )newkp q , by transforming and 

recognizing algorithms. 

…… 
, _A_ became _Q_ 
_<_ _A_ was _Q_ 
_Q_ was _A_,  
_A_ made history as _Q_ 
by _A_ ( _Q_  
_Q_ , _A_ _>_ 
…… 

……     confidence 
, _A_ became _Q_       0.09 
_<_ _A_ was _Q_       0.11 
_Q_ was _A_,        0.05 
_<_ _A_ made history as _Q_      1.00 
by _A_ ( _Q_         0.66 
_Q_ , _A_ _>_        0.14 
…… 



 

Submit ( )newkp q  as a phrase along with the words in newq  to a Web search engine, such as Google 

(http://www.google.com/).  
Grab the search result returned by the search engine. 
Extract the text snippets from the search result. 
For each snippet js , do { 

Insert a special symbol “_<_” at the head of js . 

Append a special symbol “_>_” at the tail of js . 

Replace every ( )newkp q  with a special symbol “_Q_”.   

For each textual pattern ( )c
kp P∈ , do { 

Translate the textual pattern kp  into a regular expression ( )kre p , the special symbol 

“_A_” are replaced by “(.*?)”, means this part can be matched by any string. 
If js  can match ( )kre p , then { 

Take the string corresponding to the “(.*?)” part as a plausible answer jka . 

If  ( jka  is not in ( )qA  yet)  then { 

 Add jka  to ( )qA  

Let confidence( ) confidence( )jk ka p=  

}  
else { 
 Increase confidence( )jka  by confidence( )kp   

} 
} 

} 
} 

Remove the unreasonable answers in ( )qA  using the stop-answers list and class-specific filters. 

Sort all the found answers in ( )qA  by their confidence value. 

Return the ordered top-N answers in ( )qA . 

For instance, the answer to the sample question can be extracted from the snippet “Alan Shepard was the 
first American in space ……” with confidence 0.11 using a textual pattern of the WHO-IS class “_<_ 
_A_ was _Q_”. 

The list of stop-answers contains the strings which have no chance to be a correct answer in our opinion, 
such as “he”, “today”, “http”, etc. And for each class of questions, we apply a class-specific filter which 
can help to remove the answers not for this class, e.g., a date class filter rejects a location string even it 
matches the textual pattern. 

4 Experiments  
Several experiments have been done to evaluate the performance of this approach, using the data from 
TREC8, TREC9 and TREC10. The questions with typo mistakes, the definition style questions like 
“Who is Colin Powell?“, the questions which are syntactic rewrites of earlier questions (TREC9 test 
questions No.701-893), and the questions with no associated answer regular expressions have been 
removed from the data set. Note all the Web search results were retrieved from Google in the period 
July -- August 2002.  



 

Test Data t# Train Data e# r# c# MRR_all MRR_ret 
TREC8 196 TREC9,10 757 93 52 0.22 0.46 
TREC9 438 TREC10,8 515 282 155 0.27 0.42 
TREC10 319 TREC8,9 634 230 120 0.28 0.39 
TREC8,9,10 953 TREC8,9,10 953 634 509 0.53 0.79 

Table 1, the performance of this approach on TREC8, TREC9 and TREC10 questions. 

The experiment results are shown in Table 1. Here t# means the number of test questions, e# means the 
number of training examples, r# represents the how many questions the system has returned some 
answers for, c# represents how many questions the system has correctly answered. The MRR (Mean 
Reciprocal Rank) metric was used in TREC8, TREC9 and TREC10. Here MRR_all represents the MRR 
score over all test questions, while MRR_ret represents the MRR score over the questions which the 
system has returned some answers for. 

The MRR score of this approach is not as high as that of the best question answering system in TREC. 
This discrepancy is due to many reasons. One important factor is that the answer regular expressions 
provided by TREC are quite limited, many correct answers such as “Alan B. Shepard, Jr.” are judged 
wrong since they do not occur in the TREC specified document collection. Another interesting issue is 
time, the correct answers to some questions like “Who is the U.S. president?” will change over time. 
The Web is also messier than the TREC document collection. 

This approach works quite well on simple questions, e.g. questions about ACRONYM, AUTHOR, 
BIRTHDATE, etc. The overall MRR score (MRR-all) for AUTHOR questions in TREC8 are above 
0.55, while using the AUTHOR questions and answers in TREC9 and TREC10 as training examples. 
The performance of LAMP will dramatically drop down when the length of the question becomes longer, 
for instance, a TREC8 question averagely contains 9.93 words, but a correctly answered TREC8 
question averagely contains 6.75 words. 

The performance of this approach on TREC11 questions is as follows. 

 
The above experiment results imply that this approach has high precision but low recall, i.e., this 
approach prefers "no answer" rather than "wrong answer". We think this property is good because 
"wrong answer" is usually worse than "no answer". And, this property allows this approach to be easily 
augmented with other approaches.  

To increase recall for our TREC 11 entry, we augmented this approach with a simple answer extractor 
based on Support Vector Machines (SVM) [CS00] trained using features constructed from words in the 
question, words in the candidate sentence and the POS (Part-of-Speech) tags of words neighboring a 
candidate exact answer. To find a supporting document, we return the highest ranked document (in the 
list returned by the organizers) that contains the answer returned by the system.  

The performance of the hybrid system on TREC 11 questions is as follows. 

 

CWS (Confidence Weighted Score):                   0.396 
Precision of recognizing no answer is     0 / 2   = 0.000 
Recall      of recognizing no answer is    0 / 46  = 0.000 

CWS (Confidence Weighted Score):                   0.458 
Precision of recognizing no answer is 39 / 293 = 0.133 
Recall      of recognizing no answer is 39 / 46   = 0.848 



 

5 Conclusion 
This approach distinguishes itself by its simplicity. It just uses the snippets in the Web search results, 
since it is time-consuming to download and analyze the original web documents. It does not require any 
sophisticated natural language processing on snippets, and does not need any advanced data structure, 
just simple hash table is enough. Because of this simplicity, LAMP is very efficient, which makes it 
perfect for online question answering. 

One limitation of this approach is that one textual pattern can include only one question key phrase in 
the current stage. It does not work for the questions having multiple key phrases, possibly apart from 
each other. For example, to answer the question “How many calories are there in a Big Mac?”, it would 
be better to use two question key phrases, “calories” and “Big Mac”.  Another drawback is that the 
textual patterns cannot handle long-distance relationships between the question key phrase and the 
answer. For example, the textual pattern “_Q_ became _A_,” cannot locate the answer in the text snippet 
“Alan Shepard, who in 1961 became the first American in space and ……”. However, the abundance 
and variation of the Web information makes it feasible to find answers on the Web with high probability 
through this approach, because the factual knowledge is usually replicated across the Web, expressed in 
many different forms [BLB+01]. 
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